.(Туристы идут по направлению к станции со скоростью 4,6 км/ч. им осталось пройти 11 км. успеют ли туристы

4,6*3=13,8 км туристы смогут пройти за 3 часа
нужно пройти до поезда 11 км
соответственно туристы успеют

Объяснение:
Пусть собственная скорость моторной лодки х км/ч, тогда скорость лодки по течению реки равна (х + 1,5) км/ч, а скорость лодки против течения реки равна (х - 1,5) км/ч. Моторная лодка за 8 часов по течению реки расстояние равное 8(х + 1,5) километра, а за 5 часов против течения х - 1,5) километра. По условию задачи известно, что по течению реки лодка расстояние в 2 раза большее, чем против течения. Чтобы уравнять значения пройденных расстояний, надо меньшее расстояние (против течения) умножить на 2. Составим уравнение и решим его.
8(х + 1,5) = 2 * 5(х - 1,5);
8х + 12 = 10х - 15;
8х - 10х = -15 - 12;
-2х = -27;
х = -27 : (-2);
х = 13,5 (км/ч).
ответ. 13,5 км/ч.

Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение: